Multiple solutions for a Kirchhoff-type equation with general nonlinearity

نویسندگان

چکیده

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Finite time blow up of solutions of the Kirchhoff-type equation with variable exponents

In this work, we investigate the following Kirchhoff-type equation with variable exponent nonlinearities u_{tt}-M(‖∇u‖²)△u+|u_{t}|^{p(x)-2}u_{t}=|u|^{q(x)-2}u. We proved the blow up of solutions in finite time by using modified energy functional method.

متن کامل

Multiple Sign-changing Solutions for Kirchhoff Type Problems

This article concerns the existence of sign-changing solutions to nonlocal Kirchhoff type problems of the form

متن کامل

Quasi-Periodic Solutions for 1D Nonlinear Wave Equation with a General Nonlinearity

In this paper, one–dimensional (1D) wave equation with a general nonlinearity utt−uxx +mu+f(u)= 0, m > 0 under Dirichlet boundary conditions is considered; the nonlinearity f is a real analytic, odd function and f(u)= au+ ∑ k≥r̄+1 f2k+1u , a 6=0 and r̄∈N. It is proved that for almost all m > 0 in Lebesgue measure sense, the above equation admits smallamplitude quasi-periodic solutions correspondi...

متن کامل

Positive solutions to Kirchhoff type equations with nonlinearity having prescribed asymptotic behavior

Existence and bifurcation of positive solutions to a Kirchhoff type equation ⎧⎪⎨ ⎪⎩ − ( a + b ∫ Ω |∇u|2 ) u= νf (x,u), in Ω, u= 0, on ∂Ω are considered by using topological degree argument and variational method. Here f is a continuous function which is asymptotically linear at zero and is asymptotically 3-linear at infinity. The new results fill in a gap of recent research about the Kirchhoff ...

متن کامل

Existence and Uniform Decay for a Nonlinear Beam Equation with Nonlinearity of Kirchhoff Type in Domains with Moving Boundary

We prove the exponential decay in the case n > 2, as time goes to infinity, of regular solutions for the nonlinear beam equation with memory and weak damping utt + ∆2u− M(‖∇u‖L2(Ωt))∆u + ∫ t 0 g(t − s)∆u(s)ds + αut = 0 in ∧ Q in a noncylindrical domain of Rn+1 (n ≥ 1) under suitable hypothesis on the scalar functions M and g, and where α is a positive constant. We establish existence and unique...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Advances in Nonlinear Analysis

سال: 2018

ISSN: 2191-9496,2191-950X

DOI: 10.1515/anona-2016-0093